If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+33x=0
a = -16; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·(-16)·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*-16}=\frac{-66}{-32} =2+1/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*-16}=\frac{0}{-32} =0 $
| -9+-3q=-18 | | |-3x-3|+2=26 | | -3(2s-1)-3=-3(8s+7)-3 | | 1.6(b+6)-(5.4-0.6b)=-4+3 | | 2a-5/6=15 | | -5=n÷14-6 | | 6x^2-10x=5 | | 7(p+3)+9=5(p-2)-2 | | 4/5/x=12 | | Y=2-2x-0 | | 2x+19+6=x+18 | | 1/3(x+5)-3/5(x-2)=1 | | 18+n=25 | | 3y-7525=581.600 | | -2(x+1)-x=-3(x+2) | | 140x+16=220 | | 5x-5x=10 | | 2(3r-4)=4r=3 | | 6(x-5)=-3(x+1 | | 7x-18=5x | | 66=5/6(x+3 | | x^-12x+36=0 | | 10b-3(-6b-7)=161 | | (5x+3)/6=(3x-1)/5 | | 4x^2+2x+36=0 | | 10q+28=8q-10 | | Y=2-2x-1 | | 62x=8+x | | x2=-64 | | 2x-4x(x+2)=5(x+4) | | x(1/3)=x(11/15)+3/5 | | 4x+1=12x6 |